首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3658篇
  免费   735篇
  国内免费   2220篇
测绘学   26篇
大气科学   31篇
地球物理   458篇
地质学   5413篇
海洋学   310篇
天文学   19篇
综合类   140篇
自然地理   216篇
  2024年   20篇
  2023年   106篇
  2022年   138篇
  2021年   190篇
  2020年   235篇
  2019年   287篇
  2018年   296篇
  2017年   290篇
  2016年   291篇
  2015年   275篇
  2014年   311篇
  2013年   320篇
  2012年   416篇
  2011年   266篇
  2010年   252篇
  2009年   254篇
  2008年   245篇
  2007年   277篇
  2006年   299篇
  2005年   231篇
  2004年   211篇
  2003年   210篇
  2002年   148篇
  2001年   129篇
  2000年   144篇
  1999年   124篇
  1998年   100篇
  1997年   116篇
  1996年   82篇
  1995年   74篇
  1994年   68篇
  1993年   43篇
  1992年   55篇
  1991年   28篇
  1990年   23篇
  1989年   23篇
  1988年   10篇
  1987年   14篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有6613条查询结果,搜索用时 187 毫秒
1.
U–Pb age, trace element and Hf isotope compositions of zircon were analysed for a metasedimentary rock and two amphibolites from the Kongling terrane in the northern part of the Yangtze Craton. The zircon shows distinct morphological and chemical characteristics. Most zircon in an amphibolite shows oscillatory zoning, high Th/U and 176Lu/177Hf ratios, high formation temperature, high trace element contents, clear negative Eu anomaly, as well as HREE-enriched patterns, suggesting that it is igneous. The zircon yields a weighted mean 207Pb/206Pb age of 2857 ± 8 Ma, representing the age of the magmatic protolith. The zircon in the other two samples is metamorphic. It has low Th/U ratios, low trace element concentrations, variable HREE contents (33.8 ≥ LuN≥2213; 14.7 ≤ LuN/SmN ≤ 354) and 176Lu/177Hf ratios (0.000030–0.001168). The data indicate that the zircon formed in the presence of garnet and under upper amphibolite facies conditions. The metamorphic zircon yields a weighted mean 207Pb/206Pb age of 2010 ± 13 Ma. These results combined with previously obtained Palaeoproterozoic metamorphic ages suggest a c. 2.0 Ga Palaeoproterozoic collisional event in the Yangtze Craton, which may result from the assembly of the supercontinent Columbia. The zircon in two samples yields weighted mean two-stage Hf model ( T DM2) ages of 3217 ± 110 and 2943 ± 50 Ma, respectively, indicating that their protoliths were mainly derived from Archean crust.  相似文献   
2.
通过对藏北高原西北部结则茶卡湖泊及其沿岸地质地貌调查,发现其为一个富含硼、锂、钾、锶的封闭型盐湖,沿岸海拔4 850 m拔湖325 m有一条明显的高位湖岸线,该湖岸线到湖面之间有六级湖积阶地发育,六级以上阶地保存零星。沿湖岸不同高度上的湖积物U系年龄分别为(14.2±1.2)ka BP(T2)、(38.0±3.5)ka BP(T4)和(41.6±3.2)ka BP(T5)。湖面下降的幅度是藏北高原迄今所知最大。根据湖面平均下降速度推算高位湖岸线和高位湖积层的形成年龄在(120~90)ka BP,与东部的纳木错和西部的甜水海基本一致,说明藏北高原在晚更新世初期有一个明显的泛湖期。大约100 ka BP结则茶卡湖面开始下降,晚更新世以来湖泊演化是在封闭体系干旱环境下进行的,盐湖形成于14 ka BP左右,藏北高原在晚更新世以来气候变化可能为自西向东逐渐变为干寒。  相似文献   
3.
In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies – including metabasites – lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet–olivine assemblages (i.e. ≥18–20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P–T path and peak conditions of 800–850 °C and 23–25 kbar. These conditions correspond to ∼70 km depth of burial and a metamorphic gradient of 11–12 °C km−1 that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet–whole-rock Sm–Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.  相似文献   
4.
Reviews of geographic software in this article: DEMO-GRAPHICS: WORLD POPULATIONS AND PROJECTIONS. ESP GAUSS. CEMODEL S. Damus LIMDEP. William H. Greene MICROSTAT 4.1 OTIS PCIPS. (Personal Computer Image Processing System) . H.J. Meyers and R. Bernstein. REGRESSION ANALYSIS OF TIME SERIES (RATS) SPSS/PC+ URBAN DATA MANAGEMENT SOFTWARE (UDMS)  相似文献   
5.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   
6.
The zoned pluton from Castelo Branco consists of Variscan peraluminous S-type granitic rocks. A muscovite>biotite granite in the pluton's core is surrounded successively by biotite>muscovite granodiorite, porphyritic biotite>muscovite granodiorite grading to biotite=muscovite granite, and finally by muscovite>biotite granite. ID-TIMS U–Pb ages for zircon and monazite indicate that all phases of the pluton formed at 310 ± 1 Ma. Whole-rock analyses show slight variation in 87Sr/86Sr310 Ma between 0.708 and 0.712, Nd310 Ma values between − 1 and − 4 and δ18O values between 12.2 and 13.6. These geological, mineralogical, geochemical and isotopic data indicate a crustal origin of the suite, probably from partial melting of heterogeneous Early Paleozoic pelitic country rock. In detail there is evidence for derivation from different sources, but also fractional crystallization linking some of internal plutonic phases. Least-squares analysis of major elements and modelling of trace elements indicate that the porphyritic granodiorite and biotite=muscovite granite were derived from the granodiorite magma by fractional crystallization of plagioclase, quartz, biotite and ilmenite. By contrast variation diagrams of major and trace elements in biotite and muscovite, the behaviours of Ba in microcline and whole-rock δ18O, the REE patterns of rocks and isotopic data indicate that both muscovite-dominant granites were probably originated by two distinct pulses of granite magma.  相似文献   
7.
B. Seth  S. Jung  B. Gruner   《Lithos》2008,104(1-4):131-146
Three dating techniques for metamorphic minerals using the Sm–Nd, Lu–Hf and Pb isotope systems are combined and interpreted in context with detailed petrologic data from crustal segments in NW Namibia. The combination of isochron ages using these different approaches is a valuable tool to testify for the validity of metamorphic mineral dating. Here, PbSL, Lu–Hf and Sm–Nd garnet ages obtained on low- to medium-grade metasedimentary rocks from the Central Kaoko Zone of the Neoproterozoic Kaoko belt (NW Namibia) indicate that these samples were metamorphosed at around 550–560 Ma. On the other hand, granulite facies metasedimentary rocks from the Western Kaoko Zone underwent two phases of high-grade metamorphism, one at ca. 660–625 Ma and another at ca. 550 Ma providing substantial evidence that the 660–625 Ma-event was indeed a major tectonothermal episode in the Kaoko belt. Our age data suggest that interpreting metamorphic ages by applying a single dating method only is not reliable enough when studying complex metamorphic systems. However, a combination of all three dating techniques used here provides a reliable basis for geochronological age interpretation.  相似文献   
8.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
9.
The Kalak Nappe Complex (KNC) has been regarded as Baltica passive margin metasediments telescoped eastwards onto the Baltic (Fennoscandian) Shield during the Caledonian Orogeny. Recent studies have questioned this interpretation, instead pointing to a Neoproterozoic exotic origin. In an effort to resolve this controversy we present a Sm–Nd and U–Th–Pb study of gnessic units, traditionally considered as the depositional basement, along with cover rock sediments and intrusives. Late Palaeoproterozoic gneisses now beneath the KNC were deposited after 1948 ± 33 Ma, before intrusion of the Tjukkfjellet Granite at 1796 ± 3 Ma, and were affected by later melting events at 1765 ± 9 and 1727 ± 9 Ma. These gneisses are interpreted as part of the Baltic Shield and underlie the KNC across a tectonic contact. An unconformity between psammites of the KNC and other paragneisses previously considered as its Precambrian basement is reinterpreted as a modified sedimentary contact between Neoproterozoic metasediments. These metasediments have statistically very similar detrital zircon populations with grains as young as 1034 ± 22, 1025 ± 32 and 1014 ± 14 Ma. The results indicate that the KNC sediments were deposited during the Neoproterozoic in basins along the Laurentian margin of eastern Rodinia and were not connected to Baltica via a depositional basement. Dating of the 851 ± 5 Ma Eidvågvatnet and 853 ± 4 Ma Nordneset granites shows that intrusive material associated with the Porsanger Orogeny (c. 850 Ma) affected a considerable region of the upper KNC terrane. Later Neoproterozoic events at 711 ± 6, 687 ± 12 and 617 ± 6 Ma are also recognised the latest of which may be an expression of rifting. Since early Neoproterozoic magmatism (c. 840–690 Ma) is unknown in Baltica, these results support an exotic origin for the KNC terranes.  相似文献   
10.
广西大厂拉么锌铜多金属矿床成岩成矿作用年代学研究   总被引:20,自引:1,他引:19  
李华芹  王登红  梅玉萍  梁婷  陈振宇  郭春丽  应立娟 《地质学报》2008,82(7):912-2008-01-30
本文对广西大厂矿田拉么矿区内出露的酸性侵入岩和矿石进行了精细的年代学研究,分别获得龙箱盖含斑黑云母花岗岩锆石原位SHRIMP UPb和全岩RbSr等时线年龄为94±4Ma(95%可信度)和98.6±1.9Ma(95%可信度),矽卡岩成矿期锌铜矿石中石英矿物RbSr等时线年龄为98.6±6Ma(95%可信度)。上述测定结果表明,拉么锌铜多金属矿床的成矿年龄与相关岩体的成岩年龄接近,均形成于早白垩世晚期。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号